

A Fast and Robust Algorithm for the Detection
of Circular Pieces in a Cyber Physical System

S.E. de Vegt

ES Reports
ISSN 1574-9517

ESR-2015-02
10 August 2015

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2015 Technische Universiteit Eindhoven, Electronic Systems.
All rights reserved.

http://www.es.ele.tue.nl/esreports
esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering
Electronic Systems
PO Box 513

NL-5600 MB Eindhoven
The Netherlands



Abstract— This paper presents an algorithm for the detection

of circular pieces in a Cyber Physical System xCPS (eXplore

Cyber Physical Systems). The algorithm is specific to this system,

but the presented steps could easily be modified to fit other

systems as well. Graphical input is split into multiple parts, based

on which type of transport mechanism is shown in that particular

part of the frame. The algorithm uses different strategies to

detect the pieces for different parts of the image. These strategies

involve grayscaling, edge detection and circle detection or circle

localization. The algorithm is implemented in Matlab and is

capable of processing 1 frame per second for a frame size of

720×960, benchmarked on a Intel Core i7-2670QM @2.20GHz

without external GPU acceleration. The detection rate is 93.9%

true positive.

Index Terms— Image edge detection, Image processing, Object

recognition, Image decomposition.

I. INTRODUCTION

HIS paper presents an algorithm which will be used to

process data from a camera sensor. The presented

algorithm is developed because there was a need for an

algorithm that could detect circular pieces on a Cyber Physical

System (CPS). This setup consists of several actuators, each

with their own sensors. This algorithm would allow the

replacement of the current sensors on the machine by one

camera sensor. The image from the sensor will be processed

by the algorithm and the location and color of the detected

pieces will be used by the system. The direct implementations

of existing circle detection algorithms to find the circular

pieces are not effective because these algorithms tend to detect

other curved edges in the image incorrectly as pieces. The

target system contains 4 transport bands and a rotating buffer.

A camera is located above the system, centered right above the

circular buffer. One frame of the captured video is shown in

Fig. 1, the pieces are of a circular shape and they are available

in three different colors: red, black and grey. Low contrast is a

challenging part of the problem, the black pieces have a

similar color to the transport bands and the grey pieces show

very little contrast to the aluminum parts of the system such as

the rotating buffer. Another challenging factor is the

complexity of each frame, many objects could be detect as a

circle. Furthermore, lighting is also not homogeneous, and

reflections are present as well. The goal of this research

project was to create an algorithm with an as high as possible

correct-detection rate while the false detections stay as low as

S.E. de Vegt, was Electrical Engineering student at Eindhoven University

of Technology, Eindhoven, The Netherlands.

possible. Matlab is chosen for the implementation of this

algorithm. The algorithm divides each frame into multiple

smaller frames in such a way that each of the created frames

can be processed differently. The implementation uses earlier

developed algorithms such as Canny edge detection [1] and a

circular Hough transform [2]. This paper is organized as

follows: the next section elaborates on related work. Section

III explains the developed algorithm in detail. Section IV

elaborates on the results of the algorithm. Section V proposes

future improvements and the last section concludes this paper.

II. RELATED WORK

A great deal of algorithms already exist on the topic of

circle detection, edge detection and object tracking. There are

sufficient implementations for circle detection algorithms, for

example the widely used Hough transform [2], of which a lot

of improvements are presented [3]. These two algorithms are

implemented in the Matlab function imfindcircles [4].

Other circle detection algorithms such as a randomized circle

detection algorithm [5] can detect partially covered pieces as

well. The build-in Matlab function imfindcircles is used

in this paper. Edge detection algorithms of sufficient quality

do already exist. This paper’s implementation uses both a

Canny edge detection algorithm [1] and a Sobel edge detection

algorithm [6]. Canny provides more continuous edges which is

ideal for the detection of circular pieces, while Sobel on the

other hand is a faster algorithm but less accurate [6]. Both

algorithms are already implemented in Matlab.

A Fast and Robust Algorithm for the Detection

of Circular Pieces in a Cyber Physical System

S.E. de Vegt

T
Fig. 1. An overview of the setup for which this algorithm is designed, note

the four transport bands and the rotating buffer in the center.

2

III. THE ALGORITHM

The basic idea behind the algorithm is that the frame

captured by one camera consists of several sections, for

example a transport band and a rotating buffer. For each

section there exists a different solution for detecting the

circular objects, that leads to a high detection quality for that

particular section. As shown in Fig. 2, the first step of this

algorithm is to split the image into different parts, based on

spatial constraints, this division is shown graphically in Fig.

3. This process is a hard-coded combination of bitmasking and

cropping the frame, this step has a few benefits. First of all,

the image processing algorithms can be specialized for each

section. There is no need to settle for a less efficient way of

solving one particular part in favor of another

(computationally bigger) part. Because the algorithm is split

into different methods which are each related to physical areas

in the system, it also becomes easier to update the algorithm

when a part of the system changes since only the method

corresponding to that particular area has to be changed.

Another big upside to this modular way of solving is that it

becomes feasible to parallelize this problem. In this case, one

of the two methods could be delegated to another thread or

even another CPU. With an efficient implementation and

sufficient task size, a parallel implementation can already

outperform a single-threaded implementation with two or

more tasks and a CPU with two or more cores. The specific

implementation for this setup splits each input image into two

sub-problems, as can be seen in Fig. 2. The first sub-problem

is to detect for each possible location of a piece in the rotating

buffer and if that location is empty or if there is a piece. When

a piece is detected, also the color should be determined. The

second sub-problem is to detect the location and color of every

piece on the transport bands. These two sub-problems are

solved in different ways. Subsection A describes Method 1, a

solution to sub-problem 1 in area 1 and subsection B describes

Method 2 which is the implemented solution for sub-problem

2 in area 2.

A. Method 1

Method 1 is used to solve the problem in Area 1, the area

with the rotating buffer. Using a circular Hough transform in

this region led to many erroneous detections, mainly because

of the other circular shapes present in that particular area. Also

the empty buffer locations will not always be detected in this

way. However, circle detection is not needed to determine the

possible locations of the pieces if the rotation of the buffer is

known. Determining the rotation of the device is easiest done

by looking at the screws in the center. Because the buffer is

point symmetric in the center with 3 symmetry axes, only

angles between 0° and 60° are interesting. Unlike the buffer,

the screws can be detected very easily by using a circle

detection algorithm and a mask. The area around the screws is

empty and the edges of the screws show sharp contrast with

respect to the background. The buffer-locations have to be

entered manually for one ‘setup-frame’. From the locations of

the screws in the ‘setup-frame’ and the locations of the screws

in a random other frame an affine matrix can be created which

transforms the known set into the newly found set [7].

Because there is no translation and scaling involved but only

rotation, the same matrix can be used to transform our known

buffer locations to the buffer locations in the new frame.

These steps are visualized in Fig. 4. Once these new locations

are known, it is necessary to determine if a location is empty

and determine the color of the detected pieces. For the

algorithm, the only difference between an empty location or a

location with a piece is the visible hole on the buffer locations

which is only visible at empty spots (see Fig 1.). Detecting this

hole can be done by using a circle detection algorithm. For

each of the pieces on the buffer the color has to be detected.

This color is determined by averaging the color over the area

in the center of the buffer-location. A piece is considered red

if the difference between the red color component and the

other two color components is sufficiently high, a piece is

Fig. 2. A systematic overview of the implementation of the presented

algorithm

3

Fig. 3. One frame split up into 2 parts. The blacked out area is bitmasked

away by the algorithm, to avoid confusion by the circle detection algorithm.

Part 1 corresponds to Area 1 and is solved by Method 1, Part 2 corresponds to
Area 2 and is solved by Method 2.

considered black if the average of the color components is less

than a certain value. All the other pieces are considered grey.

B. Method 2

Method 2 is used to detect the pieces on the transport bands.

In this case the positions of the individual pieces are not

related to each other, nor to the location of other physical parts

of the system. Some sort of object detection or in this case,

circle detection, has to be used to find the pieces in the image.

However, because of the poor contrast between the black

pieces and the black transport bands, some preprocessing has

to be done before imfindcircles is able to detect the

pieces. The first option was to increase the sensitivity of

imfindcircles. This parameter sets a threshold for the

minimum quality of the detected circles. Increasing the

sensitivity of this function will lead to a lot false positive

results so this is not an option. The second option was to look

at static background subtraction [8]. However, this did not

increase the detectability of the black pieces. Therefore, the

final solution was to use contrast stretching, an image

adjustment technique to increase the contrast in the darker

regions [9]. This is done by clipping brightness values up to a

certain threshold and linearly rescaling all the values

afterwards. This means that the values in the very bright

regions are clipped while increasing the contrast in the darker

areas of the image. This improved the contrast enough to use

further process the image. The next step consists of an canny

edge detector [1] followed by a circular Hough transform

algorithm [2]. This results in the locations of the pieces. Color

is again determined by thresholding the obtained color values

of the found locations.

IV. RESULTS

Table 1 shows the results of the current implementation,

area 1 and area 2 combined, on a prerecorded video stream.

The correct-detection rate of the algorithm is at 93.9%, even

though the lighting was not homogeneous during the test,

which resulted in an increased amount of erroneous detections.

This accuracy is reached by carrying out similar tests on

different video’s and tweaking the sensitivity and making

other small changes in the algorithms implementation. For

example, the way of labeling a red piece was a result from

tests on video data, which showed that thresholding only was

not sufficient. Investigating on the errors in a wider variety of

test samples will expose other weak spots which can then be

fixed to improve the detection rate and decrease the error rate.

It is remarkable that the errors almost exclusively occur in

method 2, which solves the problem with the transport bands.

The only errors occurred in method 1 were in the three frames

marked as ‘bad frames’. ‘Bad frames’ are frames in which the

detection of the screws went wrong inside the

imfindcircles function, due to the sensitivity being too

low. In such a case less than 6 screws are detected and this

results in a corrupted affine transformation matrix and thus,

erroneous locations for the buffer. Using a higher sensitivity

and selecting the 6 best circles can resolve this problem. Other

than this error in these three frames, method 2 showed no

errors in our test sequence. A large amount of the remaining

errors were reoccurring problems for a couple of consecutive

frames. The first 40 frames do not show these persistent

erroneous detections, the detection rate in those frames is

97%, and the correct-framerate, the percentage of frames

Fig. 4. Several steps of Method 1, from left to right respectively: Manual calibration, detect the angle of rotation by finding screws in the center, locate outer

points by using angle and matrix multiplication.

4

without a single error, increased to 58%. This is because when

the frame number increases, the pieces collectively move to

the bottom right of the setup, where the brightness is less then

on the top side of the setup. This is the reason for the

increasing color-detection errors. Creating homogeneous

lighting will lead to better results. Also 28 of the 33 cases of a

piece not being detected happened in the last 60 frames. Thus

fixing the brightness will also lead to an improved detection

rate. Table 2 shows the results of the two separated methods.

From this can be concluded that both methods struggle with

different issues. Method 1 only has errors when the bad frames

happen, so when the screws are not detected correctly.

Because Method 1 handles the center area of the image, where

the illumination is quite homogenous, there is no problem

detecting the colors. This is also due to the fact that Method 1

has a more robust color-detection method, it averages the

color over an area while Method 2 uses only the center point.

This is to counteract that pieces in area 2 can move outside the

camera’s view which would result in averaging over an area

which is partly outside of the frame.

Some concessions had to be done on performance. The

current speed of the algorithm is in average 1 frame per

second. This results in problems with ‘real-time’ tasks because

the real locations of the pieces may differ already from the

location determined by the algorithm. The processed video

was recorded with 10 fps. Fig. 5 shows the first 12 frames.

When the image is used in real-time environments, this means

the first frame of this video would be processed and the next

nine frames will be ‘skipped’ before another frame will be

processed. So the starting point and endpoint of the

movement of a single piece in Fig 5 almost show how much

the real and processed location could differ in a worst case

scenario. Estimating the possible movement of a piece in the

processing time of one frame results in a distance of around

15cm. However, a controller will know this and can anticipate

on the future the movements of its own actuators.

V. FUTURE IMPROVEMENTS

Further improvements to the algorithm need to be

performed. Besides the already mentioned improvements,

there are a few more advanced ideas to improve the current

state of this algorithm which will be presented in this section.

A. Overhead Protocol

The current implementation has a low false positive

detection rate. However the algorithm is unlikely to ever

become 100% accurate. Therefore, a future improvement may

be to add an extra algorithmic layer on top of the current

implementation. This layer could implement error correction

to filter out the incidental erroneous detections. For example

averaging the color of a piece over a couple of frame will

result in neglecting one incidental erroneous detection. This

will work since the algorithm does not show a lot of persistent

errors when there are no problems with illumination, most of

the errors occur just for one frame. Also ‘bad frames’ as

introduced in section IV can be detected most of the times by

checking if the detected locations are on a circle because the

buffer is circular. If the locations are not on a circle, the frame

can be dropped. Dropping such a frame might be a better

solution then continuing and reporting faulty data.

B. Parallelization

The current implementation of this algorithm is single

threaded, even though it can be easily parallelized as proposed

in section III. A small attempt has already been made but in

Matlab (version R2014a) this did not result in a measurable

speedup, however, this is very possibly due to the very poor

Matlab out of the box multi-threaded scaling. However, a

more advanced Matlab implementation, or an implementation

in a more multi-thread friendly language such as C++, C# and

many others, will result in a significant speedup, if the parallel

tasks are large enough to overcome the overhead introduced

by the parallelizing.

C. Preprocessing

Only simple preprocessing is done at the moment, however

this could increase the detection rate. For example the already

mentioned background subtraction could be implemented

again. Even though it did not help for the detection of the

black pieces, it can increase the correct detection rate of the

other colors. Also other preprocessing steps such as nonlinear

contrast adjustments with the focus on the colors of the pieces

or better sharpening of the frames could lead to better results

with imfindcircles. Furthermore, improved preprocessing

could be used to counter problems with the luminosity as

stated in Section IV.

D. Tracking

In order to reduce the workload, tracking algorithms can be

implemented. In this situation the possible directions of

movement of the pieces are known, good tracking algorithms

can reduce the area in which circles have to be detected, and

thus reduce the computational workload. A good tracking

Algorithm results

Total Frames 100 Total Detectables 1233 100 %

Correct 51 Correct 1158 93.9 %

1 Error 29 Wrong state 24 1.9 %

2 Errors 12 Wrong location 18 1.5 %

3 Errors 5 Undetected 33 2.6 %

Bad frames 3 Double detections 13 1.1 %

 Table 1. Results of the implemented algorithm, performed on a prerecorded

video stream with a resolution of 720×960. Detectables consist of all the
visible pieces and all six buffer locations (both empty and non-empty).

Method 1 vs Method 2

Total Detectables 600 Total Detectables 633

Correct 582 Correct 576

Wrong state 0 Wrong state 24

Wrong location 18 Wrong location 0

Undetected 0 Undetected 33

Double detections 0 Double detections 13

 Table 2. Results of the specific parts of the implemented algorithm, ran on a

prerecorded video with a resolution of 720×960. Detectables consist of all the
visible pieces and all six buffer locations (both empty and non-empty).

5

algorithm for this scenario which also is able to keep tracking

when occlusion occurs would be the algorithm presented by

Wang, Ma Wang and Liu [10]. The current implementation of

the developed algorithm is not capable of handling occluding

pieces, while the system is built to also stack pieces on top of

each other, which makes it interesting to think about

implementing such a tracking algorithm which is able to track

the pieces on locations where circle detection fails.

VI. CONCLUSION

In this paper an algorithm for detecting circular pieces in a

Cyber Physical System has been presented. This algorithm

splits one task in to multiple tasks (area 1 and area 2) which

can be solved individually and parallel to each other. The

overall correct-detection rate of this implementation is 93.9%

(See Table 1). Area 1 performs error-free for 97% of the

frames, however, the remaining 3% of the frames show

completely wrong detections in area 1. The detection rate in

area 2 is 90.9%.The error rate of area 2 can be halved by

creating homogeneous lighting across the system. Also future

work is proposed, which shows that the algorithm is not fully-

developed and performance can thus be improved.

VII. REFERENCES

[1] J. Canny, “A computational approach to edge

detection.,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 8, no. 6, pp. 679–698, 1986.

[2] R. O. Duda and P. E. Hart, “Use of the Hough

transformation to detect lines and curves in pictures.,”

Mag. Commun. ACM, vol. 15, no. 1, pp. 11–15, 1972.

[3] T. J. Atherton and D. J. Kerbyson, “Size invariant

circle detection,” vol. 17, no. February 1997, pp. 795–

803, 1999.

[4] “Find circles using circular Hough transform -

MATLAB imfindcircles - MathWorks Benelux.”

[Online]. Available:

http://nl.mathworks.com/help/images/ref/imfindcircles

.html. [Accessed: 28-May-2015].

[5] L. Q. Jia, C. Z. Peng, H. M. Liu, and Z. H. Wang, “A

fast randomized circle detection algorithm,” Proc. -

4th Int. Congr. Image Signal Process. CISP 2011, vol.

2, pp. 820–823, 2011.

[6] R. Maini and H. Aggarwal, “Study and comparison of

various image edge detection techniques,” Int. J.

Image Process. …, vol. 147002, no. 3, pp. 1–12, 2009.

[7] D. C. Lay, Linear Algebra and Its Applications, 4th

ed. 2012.

[8] S. Zdonik, P. Ning, S. Shekhar, J. Katz, and X. Wu,

Moving Object Detection Using Background

Subtraction. 2014.

[9] “Linear Contrast Enhancement.” [Online]. Available:

http://www.r-s-c-c.org/node/240. [Accessed: 06-Jun-

2015].

[10] J. Wang, Y. Ma, C. Li, H. Wang, and J. Liu, “Multi-

object tracking with explicit reasoning about

occlusion,” Proc. 2009 Int. Jt. Conf. Comput. Sci.

Optim. CSO 2009, vol. 2, pp. 325–327, 2009.

Fig. 5. The algorithm working on the prerecorded video stream, currently
tracking 14 pieces. The tracks shown are from the first 12 frames of the video.

The circles have the color corresponding to the piece (not visible).

