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 

Abstract— This paper presents an algorithm for the detection 

of circular pieces in a Cyber Physical System xCPS (eXplore 

Cyber Physical Systems). The algorithm is specific to this system, 

but the presented steps could easily be modified to fit other 

systems as well. Graphical input is split into multiple parts, based 

on which type of transport mechanism is shown in that particular 

part of the frame. The algorithm uses different strategies to 

detect the pieces for different parts of the image. These strategies 

involve grayscaling, edge detection and circle detection or circle 

localization. The algorithm is implemented in Matlab and is 

capable of processing 1 frame per second for a frame size of 

720×960, benchmarked on a Intel Core i7-2670QM @2.20GHz 

without external GPU acceleration. The detection rate is 93.9% 

true positive. 

 
Index Terms— Image edge detection, Image processing, Object 

recognition, Image decomposition. 

I. INTRODUCTION 

HIS paper presents an algorithm which will be used to 

process data from a camera sensor. The presented 

algorithm is developed because there was a need for an 

algorithm that could detect circular pieces on a Cyber Physical 

System (CPS). This setup consists of several actuators, each 

with their own sensors. This algorithm would allow the 

replacement of the current sensors on the machine by one 

camera sensor. The image from the sensor will be processed 

by the algorithm and the location and color of the detected 

pieces will be used by the system. The direct implementations 

of existing circle detection algorithms to find the circular 

pieces are not effective because these algorithms tend to detect 

other curved edges in the image incorrectly as pieces. The 

target system contains 4 transport bands and a rotating buffer. 

A camera is located above the system, centered right above the 

circular buffer. One frame of the captured video is shown in 

Fig.  1, the pieces are of a circular shape and they are available 

in three different colors: red, black and grey. Low contrast is a 

challenging part of the problem, the black pieces have a 

similar color to the transport bands and the grey pieces show 

very little contrast to the aluminum parts of the system such as 

the rotating buffer. Another challenging factor is the 

complexity of each frame, many objects could be detect as a 

circle. Furthermore, lighting is also not homogeneous, and 

reflections are present as well. The goal of this research 

project was to create an algorithm with an as high as possible 

correct-detection rate while the false detections stay as low as 
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possible. Matlab is chosen for the implementation of this 

algorithm. The algorithm divides each frame into multiple 

smaller frames in such a way that each of the created frames 

can be processed differently. The implementation uses earlier 

developed algorithms such as Canny edge detection [1] and a 

circular Hough transform [2]. This paper is organized as 

follows: the next section elaborates on related work. Section 

III explains the developed algorithm in detail. Section IV 

elaborates on the results of the algorithm. Section V proposes 

future improvements and the last section concludes this paper.   

II. RELATED WORK 

A great deal of algorithms already exist on the topic of 

circle detection, edge detection and object tracking. There are 

sufficient implementations for circle detection algorithms, for 

example the widely used Hough transform [2], of which a lot 

of improvements are presented [3]. These two algorithms are 

implemented in the Matlab function imfindcircles [4]. 

Other circle detection algorithms such as a randomized circle 

detection algorithm [5] can detect partially covered pieces as 

well. The build-in Matlab function imfindcircles is used 

in this paper. Edge detection algorithms of sufficient quality 

do already exist. This paper’s implementation uses both a 

Canny edge detection algorithm [1] and a Sobel edge detection 

algorithm [6]. Canny provides more continuous edges which is 

ideal for the detection of circular pieces, while Sobel on the 

other hand is a faster algorithm but less accurate [6]. Both 

algorithms are already implemented in Matlab.  
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T 
Fig.  1.  An overview of the setup for which this algorithm is designed, note 

the four transport bands and the rotating buffer in the center. 

 



2 

 

 

III. THE ALGORITHM   

The basic idea behind the algorithm is that the frame 

captured by one camera consists of several sections, for 

example a transport band and a rotating buffer. For each 

section there exists a different solution for detecting the 

circular objects, that leads to a high detection quality for that 

particular section. As shown in Fig. 2, the first step of this 

algorithm is to split the image into different parts, based on 

spatial constraints, this division is shown graphically in Fig.  

3. This process is a hard-coded combination of bitmasking and 

cropping the frame, this step has a few benefits. First of all, 

the image processing algorithms can be specialized for each 

section. There is no need to settle for a less efficient way of 

solving one particular part in favor of another 

(computationally bigger) part. Because the algorithm is split 

into different methods which are each related to physical areas 

in the system, it also becomes easier to update the algorithm 

when a part of the system changes since only the method 

corresponding to that particular area has to be changed. 

Another big upside to this modular way of solving is that it 

becomes feasible to parallelize this problem. In this case, one 

of the two methods could be delegated to another thread or 

even another CPU. With an efficient implementation and 

sufficient task size, a parallel implementation can already 

outperform a single-threaded implementation with two or 

more tasks and a CPU with two or more cores. The specific 

implementation for this setup splits each input image into two 

sub-problems, as can be seen in Fig. 2. The first sub-problem 

is to detect for each possible location of a piece in the rotating 

buffer and if that location is empty or if there is a piece. When 

a piece is detected, also the color should be determined. The 

second sub-problem is to detect the location and color of every 

piece on the transport bands. These two sub-problems are 

solved in different ways. Subsection A describes Method 1, a 

solution to sub-problem 1 in area 1 and subsection B describes 

Method 2 which is the implemented solution for sub-problem 

2 in area 2. 

 

A. Method 1  

Method 1 is used to solve the problem in Area 1, the area 

with the rotating buffer. Using a circular Hough transform in 

this region led to many erroneous detections, mainly because 

of the other circular shapes present in that particular area. Also 

the empty buffer locations will not always be detected in this 

way. However, circle detection is not needed to determine the 

possible locations of the pieces if the rotation of the buffer is 

known. Determining the rotation of the device is easiest done 

by looking at the screws in the center. Because the buffer is 

point symmetric in the center with 3 symmetry axes, only 

angles between 0° and 60° are interesting. Unlike the buffer, 

the screws can be detected very easily by using a circle 

detection algorithm and  a mask. The area around the screws is 

empty and the edges of the screws show sharp contrast with 

respect to the background. The buffer-locations have to be 

entered manually for one ‘setup-frame’. From the locations of 

the screws in the ‘setup-frame’ and the locations of the screws 

in a random other frame an affine matrix can be created which 

transforms the known set into the newly found set [7]. 

Because there is no translation and scaling involved but only 

rotation, the same matrix can be used to transform our known 

buffer locations to the buffer locations in the new frame. 

These steps are visualized in Fig.  4. Once these new locations 

are known, it is necessary to determine if a location is empty 

and determine the color of the detected pieces. For the 

algorithm, the only difference between an empty location or a 

location with a piece is the visible hole on the buffer locations 

which is only visible at empty spots (see Fig 1.). Detecting this 

hole can be done by using a circle detection algorithm. For 

each of the pieces on the buffer the color has to be detected. 

This color is determined by averaging the color over the area 

in the center of the buffer-location. A piece is considered red 

if the difference between the red color component and the 

other two color components is sufficiently high, a piece is 

Fig. 2.  A systematic overview of the implementation of the presented 

algorithm 

 



3 

 

 

 
Fig.  3.  One frame split up into 2 parts. The blacked out area is bitmasked 

away by the algorithm, to avoid confusion by the circle detection algorithm. 

Part 1 corresponds to Area 1 and is solved by Method 1, Part 2 corresponds to 
Area 2 and is solved by Method 2. 

 
considered black if the average of the color components is less 

than a certain value. All the other pieces are considered grey.  

B. Method 2 

Method 2 is used to detect the pieces on the transport bands. 

In this case the positions of the individual pieces are not 

related to each other, nor to the location of other physical parts 

of the system. Some sort of object detection or in this case, 

circle detection, has to be used to find the pieces in the image. 

However, because of the poor contrast between the black 

pieces and the black transport bands, some preprocessing has 

to be done before imfindcircles is able to detect the 

pieces. The first option was to increase the sensitivity of 

imfindcircles. This parameter sets a threshold for the 

minimum quality of the detected circles. Increasing the 

sensitivity of this function will lead to a lot false positive 

results so this is not an option. The second option was to look 

at static background subtraction [8]. However, this did not 

increase the detectability of the black pieces. Therefore, the 

final solution was to use contrast stretching, an image 

adjustment technique to increase the contrast in the darker 

regions [9]. This is done by clipping brightness values up to a 

certain threshold and linearly rescaling all the values 

afterwards. This means that the values in the very bright 

regions are clipped while increasing the contrast in the darker 

areas of the image. This  improved the contrast enough to use 

further process the image. The next step consists of an canny 

edge detector [1] followed by a circular Hough transform 

algorithm [2]. This results in the locations of the pieces. Color 

is again determined by thresholding the obtained color values 

of the found locations.  

IV. RESULTS 

Table 1 shows the results of the current implementation, 

area 1 and area 2 combined, on a prerecorded video stream. 

The correct-detection rate of the algorithm is at 93.9%, even 

though the lighting was not homogeneous during the test, 

which resulted in an increased amount of erroneous detections. 

This accuracy is reached by carrying out similar tests on 

different video’s and tweaking the sensitivity and making 

other small changes in the algorithms implementation. For 

example, the way of labeling a red piece was a result from 

tests on video data, which showed that thresholding only was 

not sufficient. Investigating on the errors in a wider variety of 

test samples will expose other weak spots which can then be 

fixed to improve the detection rate and decrease the error rate. 

It is remarkable that the errors almost exclusively occur in 

method 2, which solves the problem with the transport bands. 

The only errors occurred in method 1 were in the three frames 

marked as ‘bad frames’. ‘Bad frames’ are frames in which the 

detection of the screws went wrong inside the 

imfindcircles function, due to the sensitivity being too 

low. In such a case less than 6 screws are detected and this 

results in a corrupted affine transformation matrix and thus, 

erroneous locations for the buffer. Using a higher sensitivity 

and selecting the 6 best circles can resolve this problem. Other 

than this error in these three frames, method 2 showed no 

errors in our test sequence. A large amount of the remaining 

errors were reoccurring problems for a couple of consecutive 

frames. The first 40 frames do not show these persistent 

erroneous detections, the detection rate in those frames is 

97%, and the correct-framerate, the percentage of frames 

Fig.  4. Several steps of Method 1, from left to right respectively: Manual calibration, detect the angle of rotation by finding screws in the center, locate outer  

points by using angle and matrix multiplication. 
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without a single error, increased to 58%. This is because when 

the frame number increases, the pieces collectively move to 

the bottom right of the setup, where the brightness is less then 

on the top side of the setup. This is the reason for the 

increasing color-detection errors. Creating homogeneous 

lighting will lead to better results. Also 28 of the 33 cases of a 

piece not being detected happened in the last 60 frames. Thus 

fixing the brightness will also lead to an improved detection 

rate. Table 2 shows the results of the two separated methods. 

From this can be concluded that both methods struggle with 

different issues. Method 1 only has errors when the bad frames 

happen, so when the screws are not detected correctly. 

Because Method 1 handles the center area of the image, where 

the illumination is quite homogenous, there is no problem 

detecting the colors. This is also due to the fact that Method 1 

has a more robust color-detection method, it averages the 

color over an area while Method 2 uses only the center point. 

This is to counteract that pieces in area 2 can move outside the 

camera’s view which would result in averaging over an area 

which is partly outside of the frame.   

 

Some concessions had to be done on performance. The 

current speed of the algorithm is in average 1 frame per 

second. This results in problems with ‘real-time’ tasks because 

the real locations of the pieces may differ already from the 

location determined by the algorithm. The processed video 

was recorded with 10 fps. Fig. 5 shows the first 12 frames. 

When the image is used in real-time environments, this means 

the first frame of this video would be processed and the next 

nine frames will be ‘skipped’ before another frame will be 

processed.  So the starting point and endpoint of the 

movement of a single piece in Fig 5 almost show how much 

the real and processed location could differ in a worst case 

scenario. Estimating the possible movement of a piece in the 

processing time of one frame results in a distance of around 

15cm. However, a controller will know this and can anticipate 

on the future the movements of its own actuators.  

V. FUTURE IMPROVEMENTS 

Further improvements to the algorithm need to be 

performed. Besides the already mentioned improvements, 

there are a few more advanced ideas to improve the current 

state of this algorithm which will be presented in this section.  

A. Overhead Protocol 

The current implementation has a low false positive 

detection rate. However the algorithm is unlikely to ever 

become 100% accurate. Therefore, a future improvement may 

be to add an extra algorithmic layer on top of the current 

implementation. This layer could implement error correction 

to filter out the incidental erroneous detections. For example 

averaging the color of a piece over a couple of frame will 

result in neglecting one incidental erroneous detection. This 

will work since the algorithm does not show a lot of persistent 

errors when there are no problems with illumination, most of 

the errors occur just for one frame. Also ‘bad frames’ as 

introduced in section IV can be detected most of the times by 

checking if the detected locations are on a circle because the 

buffer is circular. If the locations are not on a circle, the frame 

can be dropped. Dropping such a frame might be a better 

solution then continuing and reporting faulty data.  

B. Parallelization 

The current implementation of this algorithm is single 

threaded, even though it can be easily parallelized as proposed 

in section III. A small attempt has already been made but in 

Matlab (version R2014a) this did not result in a measurable 

speedup, however, this is very possibly due to the very poor 

Matlab out of the box multi-threaded scaling.  However, a 

more advanced Matlab implementation, or an implementation 

in a more multi-thread friendly language such as C++, C# and 

many others, will result in a significant speedup, if the parallel 

tasks are large enough to overcome the overhead introduced 

by the parallelizing. 

C. Preprocessing 

Only simple preprocessing is done at the moment, however 

this could increase the detection rate. For example the already 

mentioned background subtraction could be implemented 

again. Even though it did not help for the detection of the 

black pieces, it can increase the correct detection rate of the 

other colors. Also other preprocessing steps such as nonlinear 

contrast adjustments with the focus on the colors of the pieces 

or  better sharpening of the frames could lead to better results 

with imfindcircles. Furthermore, improved preprocessing 

could be used to counter problems with the luminosity as 

stated in Section IV. 

D. Tracking 

In order to reduce the workload, tracking algorithms can be 

implemented. In this situation the possible directions of 

movement of the pieces are known, good tracking algorithms 

can reduce the area in which circles have to be detected, and 

thus reduce the computational workload. A good tracking 

Algorithm results 

Total Frames 100 Total Detectables  1233 100 % 

Correct 51 Correct 1158 93.9 % 

1 Error 29 Wrong state 24 1.9 % 

2 Errors 12 Wrong location 18 1.5 % 

3 Errors 5 Undetected 33 2.6 % 

Bad frames 3 Double detections 13 1.1 % 

 Table  1.  Results of the implemented algorithm, performed on a prerecorded 

video stream with a resolution of 720×960. Detectables consist of all the 
visible pieces and all six buffer locations (both empty and  non-empty). 

 

Method 1      vs       Method 2 

Total Detectables 600 Total Detectables  633 

Correct 582 Correct 576 

Wrong state 0 Wrong state 24 

Wrong location 18 Wrong location 0 

Undetected 0 Undetected 33 

Double detections 0 Double detections 13 

 Table 2.  Results of the specific parts of the implemented algorithm, ran on a 

prerecorded video with a resolution of 720×960. Detectables consist of all the 
visible pieces and all six buffer locations (both empty and  non-empty). 
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algorithm for this scenario which also is able to keep tracking 

when occlusion occurs would be the algorithm presented by 

Wang, Ma Wang and Liu [10]. The current implementation of 

the developed algorithm is not capable of handling occluding 

pieces, while the system is built to also stack pieces on top of 

each other, which makes it interesting to think about 

implementing such a tracking algorithm which is able to track 

the pieces on locations where circle detection fails. 

VI. CONCLUSION 

In this paper an algorithm for detecting circular pieces in a 

Cyber Physical System has been presented. This algorithm 

splits one task in to multiple tasks (area 1 and area 2) which 

can be solved  individually and parallel to each other. The 

overall correct-detection rate of this implementation is 93.9% 

(See Table 1). Area 1 performs error-free for 97% of the 

frames, however, the remaining 3% of the frames show 

completely wrong detections in area 1. The detection rate in 

area 2 is 90.9%.The error rate of area 2 can be halved by 

creating homogeneous lighting across the system. Also future 

work is proposed, which shows that the algorithm is not fully-

developed and performance can thus be improved.  
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Fig.  5.  The algorithm working on the prerecorded video stream, currently 
tracking 14 pieces. The tracks shown are from the first 12 frames of the video. 

The circles have the color corresponding to the piece (not visible). 


