
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UML Profile for Modeling System 
Observation 

 
Mathias Funk, Piet van der Putten and Henk Corporaal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ES Reports 
ISSN 1574-9517 

 
ESR-2008-09 
19 September 2008 
 

Eindhoven University of Technology 
Department of Electrical Engineering 
Electronic Systems 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2008 Technische Universiteit Eindhoven, Electronic Systems. 

All rights reserved. 

 

 

 

 

http://www.es.ele.tue.nl/esreports 

esreports@es.ele.tue.nl 

 

Eindhoven University of Technology 

Department of Electrical Engineering 

Electronic Systems 

PO Box 513 

NL-5600 MB Eindhoven 

The Netherlands 



UML Profile for Modeling Product Observation

Version 1.0

Mathias Funk, P.H.A. van der Putten, Henk Corporaal

Department of Electrical Engineering

Eindhoven University of Technology

5600MB Eindhoven, The Netherlands

m.funk@tue.nl

Abstract

Nowadays interactive electronics products offer a

huge functionality to prospective customers, but often it

is too huge and complex to be grasped and used success-

fully. In this case, customers often obviate the struggle

and return the products to the shop. Also the variabil-

ity in scope and features of a product is so large that

an up-front specification becomes hard if not impossi-

ble. To avoid the problem of an inadequate match be-

tween customer expectations and designer assumptions,

new sources of product usage information have to be

developed. One possibility is to integrate observation

functionality into the products, continuously involving

real users in the product development process. The in-

tegration of such functionality is an often overlooked

challenge that should be tackled with an appropriate en-

gineering methodology. This report presents on-going

work about a novel design for observation approach that
supports early observation integration and enables the

cooperation with various information stakeholders. We

show how observation can be embedded seamlessly in a

model-driven development process using UML.

1 Introduction

Complex innovative electronic products often fail to
satisfy customers’ needs. Products are too complicated
and the inherent functionality is often not relevant to
user needs and expectations. Increasing numbers of re-
turned products support this [1]. On the other hand,
nowadays products are hard to specify because of their
high complexity and because of rapidly changing user
demands. Also, faster cycles in the product creation
process cannot benefit from traditional feedback chan-
nels any more. While, a couple of years ago, a product

technology could reach maturity within 10 to 20 cycles,
thus allowing for gradual improvements, todays prod-
ucts have to accomplish the same within three cycles.
Obviously, delivering a mature product in this setting
becomes difficult.

Accordingly, complex interactive products should be
built for rapid changes. Products can be adapted to
changing needs during development and even after re-
lease, in terms of firmware updates and and the like.
Still, targeting the product for a certain user base is
a major problem in the industry [1]. One reason for
this is the lack of usage information which is reliable
enough to base the further development of the product
on.

Our approach towards this problem is to build ob-
servation modules into products. These observation
modules can be configured remotely and observe parts
of the system including user interaction, system perfor-
mance and potentially user satisfaction with the system
provided functionality. The products are given to se-
lected key testers who use the products in their habit-
ual environment - something, which promises to yield
more representative data than, for instance, usability
labs. It is important to note that even during the exper-
iment, that is, with the products residing at the tester’s
home, the configuration of observation can be changed
according to recent findings of information stakehold-
ers. The observation modules send collected data to
a server on the Internet. There, the data is aggre-
gated and made accessible for analysis purposes which
might be a real-time visualization of usage statistics or
a more extensive analysis by means of process mining
tools that capture patterns inside the data stream.

This report concentrates on the integration of such
observation facilities into products. We propose a
model-driven technique to do this in an efficient and
structured way which is tailored to current system



development practices. Subsequently, we show how
observation-related parts of the system can be modeled
by means of a novel UML profile. The report ends with
a conclusion and an outline of possible future steps.

2 Related work

The remote monitoring of products has been done
before, ranging in scope from the monitoring of cars to
building automation, computer programs, mobile de-
vices, and websites [6, 7, 8, 11]. However, our research
is different in two important aspects: First, in our ap-
proach we assume that information stakeholders are
not willing to use complex programming paradigms to
achieve the sought-after data, therefore we use a visual
language to specify observation behavior in a domain-
specific way. Second, the integration of observation
functionality into the target system is described in a
software engineering process which is, in our opinion,
necessary for widespread use. On the technical level we
rely on the proven model-driven engineering approach,
but also try to apply more agile modeling techniques
like model interpretation [3] that allows for dynamic
adaptation of runtime systems without the need for
client compilation support. The modeling of observa-
tion systems is performed using the Unified Modeling
Language (UML) [10] and, more precisely, its profile
extension mechanism [2].

Besides that, there is also the area of large enter-
prise event reporting systems like WBEM [12]. These
systems aggregate business information from various
sources and present this data to stakeholders. The gen-
eral approach of these systems is similar to that of an
observation system, however the proposed observation
system aims not only at scalability, but is also flexible
and light-weight. Since observed products might have
limited performance resources or are in others ways not
capable of costly computations. The processing of ob-
served data works is done similar to event correlation
systems [9], but generally uses less functions and ex-
pression power. Instead the focus is on a visual lan-
guage that enables non-programmers to specify obser-
vation according to their information requirements.

3 Product usage observation

Our approach separates the concerns of (i) prod-
uct or system development and (ii) the specification of
what to observe and how to present the collected data.
In its application, product observation [5] involves ac-
cordingly two roles: the first role is a system developer,
concerned with the integration of the observation mod-

ule into the product. The second role, the informa-
tion stakeholder, specifies observation in an easy and
straight-forward process. For information stakeholders
the proposed approach opens a dedicated information
channel which provides potentially high quality data.
Even more importantly, the observation behavior can
be adapted to changing information needs remotely.

In cases of large observation systems or the integra-
tion of observation into a number of different products,
the developer role mentioned above can be split up into
two dedicated roles: the application developer and the
platform developer. While the application developer is
concerned with the integration of observation callbacks,
hooks, into the product, the platform developer focuses
on the observation system that is finally integrated into
the product.

An observation system consists of three main layers:
the authoring and analysis layer, the management and
repository layer, and the observation layer (cf. Fig-
ure 1). On the first layer, it is specified what to ob-
serve and how to process and present the collected in-
formation. The management and repository layer plays
mainly the role of a middleware between specification
of observation and observation itself; it transports ob-
servation specifications towards the observation layer
and the observed data from products back to the au-
thoring and analysis layer. The observation layer is
the place where the actual observation takes place in-
side the products. From the development perspective,
two interesting things happen here: first, hooks have to
be integrated into the product. Those hooks represent
places that can be observed, that is, they are proxies
to the actual places in hardware and software where
the actual data is generated. This encapsulation helps
to maintain a consistent interface from product to ob-
servation module. Second, observation specifications
coming from the authoring layer are transformed into
executable runtime structures and represent the logic
of observation in a certain scenario. The latter aspect
is addressed in [4].

4 Modeling observation

Modeling of observation systems is done by means of
the Unified Modeling Language (UML). This language
is an industry-wide standard for modeling of hardware
and software systems. UML models are widely under-
stood by developers in the community, and the mod-
eling benefits from extensive tool support. UML of-
fers a light-weight extension mechanism, profiles, that
is suitable for building domain-specific UML models.
This means to project domain language semantics onto
UML by technically extending it with a dedicated set



Figure 1. Technical observation system overview

Figure 2. Observation profile (package view)



of new concepts.

A profile denotes not only a list of concepts that are
to be used to build a certain kind of system or system
part. Likewise, the use of concepts shall be shown. At
the same time, a profile is also a generalized descrip-
tion of possible systems. Since the variability in the
domain of observation system is high, ranging from en-
terprise level systems with huge performance resources
to embedded systems that barely can afford the nec-
essary processor cycles for pre-processing of collected
data. The level of detail that is shown in the obser-
vation profile differs much. Parts like the interface
between host system and observation component can
be described in high detail whereas large parts of the
data collection support system and the whole authoring
and analysis layer cannot be specified in general terms.
Still, in these parts, the main concepts are provided and
linked in order to find a compromise between concrete-
ness and flexibility. Sub-profiles are shown here in an
overview; most contain more elements that structure
the big building blocks explained here.

The observation profile as shown in Figure 2 is basi-
cally divided into five sub-profiles that can be mapped
to three layers of an observation system (cf. Section 3).
While the observation authoring and the observation
presentation profile packages are entirely concerned
with the authoring and analysis layer, the management
and repository profile packages respectively belong to
the management and repository layer. The remaining
execution profile package is concerned with the obser-
vation layer.

In the following, the five main sub packages and their
contents shall be described in detail, beginning with the
authoring profile package.

5 Observation Authoring

The authoring profile package (cf. Figure 3) is di-
vided into five sub packages: Besides the specification
formalization and the authoring environment packages
which describe the tooling for observation definition,
the simulation package serves as a basis for the testing
of observation specifications and the semantics pack-
age provides means to define semantic concepts which
can be attached to specification elements. Finally, the
visualization formalization is part of this sub package
since it is crucial to define metrics together with their
presentation in the authoring phase within one envi-
ronment in order to simplify the domain experts’ tasks
and leverage tools without too many context changes.

5.1 Specification Formalization

Since observations always follow a specific purpose,
it is often necessary that observation specifications
grasp the observation-related semantics of a certain
domain. Therefore we do not propose a single lan-
guage for all kinds of observation scenarios and applica-
tions domains, but instead the essential building blocks
for domain-specific observation languages. The obser-
vation specification formalization sub-profile contains
those building blocks. The main element is the «Ob-
servation Specification» which serves as a container for
«Specification Element»s. These elements can be ei-
ther «Specification Block» or «Connector», a notion
which is is close to the event-driven paradigm in spec-
ifying observation. However, this can be mapped eas-
ily to other paradigms like rule-based or metrics-based
definitions. Even for these different approaches to-
wards observation specification, the sub types of blocks,
«Event Source», «Processing», «Concept», and «Ex-
port» are valid. These concepts are mandatory for the
development and execution of an observation system.
Finally, «Syntax Constraint»s are needed to define the
exact syntax of the intended domain-specific language.
Both «Specification Block» and «Connector» have con-
straints attached that serve as a basic grammar of an
observation description. However, more sophisticated
semantic constraints are posed by the editor as denoted
in the authoring environment sub-profile.

5.2 Authoring Environment

Inside an authoring environment, several editors
might play a role for a concise definition of observation,
however, only two of them shall be described here. Oth-
ers, such as editors for surveys and semantic concepts
and ontologies are beyond the scope of this report.

The logical first step in the observation flow is to
define what should be observed and how the collected
data should be processed. Therefore a comprehensive
editor, «Specification Editor», is needed that provides
observation building blocks in a directly manageable
way. The editor provides means to construct specifica-
tions by using visual or textual «Specification Element
Representation». Ways to manipulate the representa-
tions are abstracted as «Manipulation». Underlying
details of this concept are auxiliary items that are be-
yond the scope of the observation profile. The editor
has a strong dependency on the «Observation Specifi-
cation Formalization» package, as that defines the ac-
tual syntax of the observation specification language,
being which elements to include and to allow in con-
nection with other elements and which constraints to



Figure 3. Authoring profile overview

satisfy for a valid specification. That is, the editor
incorporates validation of newly created observation
specifications and thus ensures that all specifications
comply to the syntax and other additional constraints
of the domain-specific language.

The second editor is used to define an observation
specific platform model of the host system. This model
defines the exact properties of hooks in the observation
system that can be accessed. Similar concepts are used
for the definition of the editor compared to the speci-
fication editor. However, this editor results in a hook
model that is a description of the interface between
observation system and host system. This is the view
an observer gains of the host system. Naturally, this
editor has a dependency relationship to the observa-
tion integration package, more specifically, the «hook»

concept.

5.3 Simulator

Before distributing an observation specification to
potentially hundreds of test machines, it is advisable
to test or simulate it within the authoring environ-
ment. Moreover, this allows to briefly check if the
data is collected, processed and finally presented in the
right way. The Observation Simulator package con-

tains two concepts that connect to observation inte-
gration concepts and basically schedule and generate
synthetic hook data which is then processed as speci-
fied previously. The «SimulationScheduler» takes in an
observation specification and executes it using the «Ob-
serveeSimulator». The latter concept denotes a sub-
system which generates hook data and triggers hooks
accordingly, by using either a user interface that allows
authoring environment user to trigger hooks with user-
defined data, or by incorporating hook trigger proba-
bilities defined a-priori. These facilities can be used to
check the routing of observation events and the process-
ing semantics, leading to a specification that collects
the relevant data accurately.

5.4 Semantics

The semantics package aims at the information level
of observed data, that is, the connection of atomic
events to semantic contexts. By linking simple events
together, insight into more abstract usage patterns can
be gained. Basically, a «SemanticConcept» is stored
within an «Ontology». Presumably, multiple ontolo-
gies can be used in the specification process to divide
the semantic properties of host system, experiment-
related information, and other semantic content into



respective ontologies. The linking between specifica-
tion and semantics is expressed with a link between
the ontology-based concept and the «Concept» speci-
fication block (cf. Figure 3).

5.5 Visualization Formalization

While the main focus of the authoring profile pack-
age is on specification of observation, the visualization
specification is also part of it. The authoring phase
is the observation flow is naturally also the place for
thinking about how the collected information is fur-
ther used and presented. The visualization sub-profile
targets the definition of metrics within the authoring
environment that translate raw or preprocessed obser-
vation data into accessible information. These met-
rics can be leveraged within the analysis phase in the
form of charts, data views and other visual represen-
tations. The «Metric» concept denotes this idea. A
metric is based on one or more axes which represent a
data filter. The «Axis» concept is abstract and sub-
concepts like «AggregateAxis», «SemanticAxis», and
«TimeAxis» realize different filter domains. For in-
stance, the metric ”average time for all users using fea-
tures A, B, or C over every single experiment day” uses
three axes: a time axis for the all days of the exper-
iment, a semantic axis for features A, B, C, and an
aggregate axis for the aggregate sum of time that the
users have used the respective feature per day. This
metric can be easily visualized, for instance, by means
of a line chart. In the following section the concepts
using such metrics are explained.

6 Observation Presentation

- Visualizer

The visualization of observation data is only one
possibility to further use captured data; another is to
export the data, for instance, to specialized analysis
tools. Besides offline analysis techniques, the real-time
visualization of collected data in the instant it reaches
the server is crucial to oversee the study, to make sure
all necessary data is collected, and to grasp a quick
overview on data aggregates.

The presentation profile package shown in Figure 4
contains at this point only the presentation sub-profile
which basically contains «View» sub-concepts. The
«ChartView» is connected to a «Metric» concept and
visualizes collected according to the axes defined in
this metric. An «ActivityView» is specialized view for
activity and status information of product instances
(«MachineStatusView»), but also regarding the distri-
bution status of observation specifications. Since obser-

Figure 4. Presentation overview - Observa-

tion visualiser

vation modules inside the products “pull” the specifica-
tions, a «SpecificationDistributionView» helps to keep
track of the module updates. Finally, there are views
that show the raw collected data. The «DataView»

concept denotes such views which provide richer infor-
mation to advanced users. Compared to charts which
show mainly an aggregate simplification of all collected
data, the data views display task data fields, semantic
properties as well as originator information.

7 Observation Management

- Specification Distribution

Before observation specifications can be executed on
the product instances, they have to get there first. The
observation system provides a middleware that bridges
the infrastructure gap between authoring environment
and product instance. The specification distribution
sub-profile (cf. Figure 5) denotes the necessary con-
cepts for such a distribution middleware. Commonly
realized as a server, it provides two interfaces: the
«SpecificationPublisher» concept which permits the
authoring environment client to send a specification
to the server, and the «SpecificationSubscriber» that
provides access to new specifications for the observa-
tion module client, in this context called a «Machine».
As soon as the latter interface is accessed by such a
machine, the «ObservationDistribution» compiles an
«ObservationPlan» that contains all valid and active
«ObservationSpecification»s for this machine. The ma-
chines analyze the received plan and update themselves
with new specifications in case of a changed plan. The
subscriber interface contributes events to the activity
and update status of certain machines, too.



Figure 5. Observation Management overview

- Observation Specification Distribution

Figure 6. Observation Repository overview

8 Observation Repository

The repository layer of an observation system is re-
sponsible for collecting pre-processed data from local
observation units (directly) and from proxy units that
bridge a potential technical gap between local units
and repository server. The two main parts are the
data storage sub-profile and the data access sub-profile
(cf. Figure 6). While the first serves as a general data
storage place for all sources of information, the latter
handles access for the observation-integrated analysis
components and external tools that require unfiltered
data access.

8.1 Data Storage

The storage of observation data is technically one
of the most demanding tasks in the whole system as
potentially a large mass of data items can be collected.
However, the description of observation-related parts
is rather short since flexibility regarding the data base
and data base abstraction is crucial. «DataCollector»
is an interface similar to the ones in the specifica-
tion distribution sub-package. It allows the observa-
tion module client to access the data collection server
and send collected data which is subsequently stored
according to a «DataSchema» in the data base. As
mentioned before, the data base access has to be flex-
ible, so a «DatabaseAccessor» serves as a proxy to a
data storage implementation.

8.2 Data Access

Observation data access use used by data con-
sumers such as the internal visualization on the anal-
ysis layer and external tools that might require differ-
ent data formats and support only few access meth-
ods. Basically, this sub-profile shown in Figure 6
provides a «DataView» that contains a «Query» to
access a «DataSource». This source directly links
to the «DatabaseAccessor» which abstracts from the
database. In addition, the «DataView» involves a spe-
cialized «ExportInterface» which enables external data
consumers to access the collected observation in the
right way.

9 Observation Execution

The observation execution profile package is con-
cerned with both observer and observee parts of the
observation system. In its application, it is almost
entirely built into the product and accesses the host
system via a hook interface to acquire data. Inside
this profile package there are two sub-profiles that de-
scribe architecture of observation and its integration
into products. Another part deals with the observation
behavior at runtime, and the forth package provides
structures for the observation data that is eventually
collected.

9.1 Integration

In the specification of observation, hooks are used as
information sources. However, hooks are only abstract
places where information can be perceived. Therefore,
on the system level, a «Hook» is realized as a proxy



Figure 7. Observation Integration overview

element that encapsulates the combination of an «Ob-
servable» element and its observation-related proper-
ties, such as «Characteristic» and «Constraint». Char-
acteristics cover timing properties and data types, con-
straints describe runtime limitations of the observable.
This meta-information can be used to build predictable
observation modules, or to simulate observation behav-
ior prior to implementation or deployment.

Hooks and observables are basically two different
views on the same entity. From the hook side, only
observation-related properties are shown and other in-
formation, e.g. about the implementation, is hidden -
vice versa from the observable side. Both stereotypes
are aggregated in respective stereotypes, «HookModel»
and «Observee». While the hook model is simply a col-
lection of hooks without further meaning, the observee
denotes a system part which contains «Observable»

elements, but is itself not directly observable. This
stereotype can be used early in the development to
annotate system parts that should be observed, and
can be refined later to actual «Observable»s. Another
stereotype of the integration profile is the «Observa-
tionContext» which represents contextual information
belonging to observable or observee. This information
can (i) determine how the observable behaves, gener-
ates data, and responds to triggering, and (ii) it can
be part of the raw observation data that is generated
by the observable. All context information depends on
the «ObservationScenario». Such a scenario is a usage
setting, e.g. an experiment setup, and contains infor-
mation about the environment the product is used in,
as well as the user who interacts with the product.

To further explain the relationship between hooks
and observables, we will have a look at interaction
patterns in the observation domain. The nature of
hooks, being either self-triggering, externally triggered,
or both, suggests basically two interaction patterns.
The self triggering and the externally triggered pat-
terns are explained in Figure 8 by using the aforemen-

Figure 8. Interaction patterns, note the com-

munication directions

tioned stereotypes of «Observable» and «Hook».
The first pattern is suitable for hooks which are self-

triggered, that is, the observable system structure au-
tonomously triggers the respective hook object when-
ever new information is perceived and should be fed
into the observation system. In this pattern the re-
sponsibility of taking action lies on the observee’s side.

The second pattern deals with hooks that have to be
triggered externally in order to produce data. In this
pattern, the hook object is linked to the observable
structure, e.g. in the form of a public operation, and
can trigger the observable. In the rare case that an
observable has both characteristics, a combination of
those patterns is also possible.

Hooks, as their proxy nature suggests, connect ob-
servables to the respective interface in the observation
module, the «HookInterface» as shown in Figure 7.
The observable element delivers raw data to the inter-
face, and inside the module this interface presents the
data to the observation component. The component
subsequently processes the raw data according to the
specified observation behavior. Obviously, the resulting
data is determined to a large extent by the observation
system input coming from hooks, thus the strong con-
nection to the «HookData» stereotype (cf. Figure 7).

9.2 Architecture

The «HookInterface» is one of the main parts of the
observation architecture profile shown in Figure 9. The
interface stereotype is a part of the «ObservationMod-
ule», namely being a sub stereotype of «Observation-
SubModule». Other sub modules are concerned with
the communication between observation and repository



Figure 9. Observation Architecture overview

layer (cf. Figure 1). Also, an observation module could
possibly have a user interface in order to inform the
user about the observation or to collect subjective feed-
back in the form of questionnaires.

Two submodules deal with runtime behavior of spec-
ified observation, the observation component. The
«Configurator» receives an observation specification
and translates it into an executable «ObservationCom-
ponent» which is run by the «Scheduler». The latter
module is responsible for triggering of hooks and the
synchronization of concurrent events.

9.3 Behavior

The behavior sub-profile (cf. Figure 10)describes
the dynamic runtime structures that form an «Ob-
servationSpecification», and that are executed within
the observation module inside the host system. These
building blocks are dynamically created and linked,
and enable a flexible adaptation of observation logic to
changed requirements. Corresponding elements are de-
noted in an observation specification which is a model
of the observation behavior that is subsequently cre-
ated and executed. The structure of the behavior sub-
profile is in this sense similar to the specification for-
malization sub-profile structure.

The basic functionality a dynamic building block
needs is expressed in the «FlowNode» concept: event
routing behavior. «FlowNode»s can be connected via
«FlowRoute»s. While incoming routes of a node are
independent and can even be assigned a name for a
parameter, outgoing routes are all triggered once the
node fires an event.

Concrete realizations of the abstract «FlowNode»

concept are: (1) «ProcessingNode»s which are capable
of processing the data contained in incoming events,
(2) «ExportNode»s which cache, serialize and transmit

Figure 11. Observation Data overview

incoming events to the «Communicator» (cf. Figure 9),
(3) «SemanticNode»s which attach semantic concepts
to an incoming and instantly outgoing event, and (4)
«Hook»s which are the entry points for data and events
in the «ObservationComponent».

According to different uses of the hook, there are
several types of hooks: «PlatformHook»s which con-
nect to the host system (that is, the «Hook» concept)
and acquire data therefrom. «SystemHook»s capture
events generated inside the observation system, being
for instance status messages and error codes. Finally,
there are «SemanticHook»s which capture semantic
events. These events are triggered whenever a seman-
tic concept is attached to an event in the «Observa-
tionComponent». Especially this enables information
stakeholders to quickly abstract from hooks and low-
level events by means of user-defined semantic con-
cepts. Once these concepts are bound to events and
data, a considerably easier specification of observation
logic can be achieved.

9.4 Data

Being almost intangible within the observation sys-
tem, but becoming the most stable artifact of obser-
vation once it reaches the data collection server, the
structure and properties of observation data are de-
noted in the data sub-profile (cf. Figure 11). When it
is generated or captured in its raw form in a «Hook»,
the «HookData» can have two modalities «HookEvent-
Data» and «HookStatusData», the former expressing
an event which occurs at a distinct time point, the
latter expressing a sample taken from a continuous
data stream. As soon as this data is processed in the
«ObservationComponent» it becomes «ComplexEvent-
Data» connected to an «Originator» and potentially
«SemanticConcept»s. However, all types of «Observa-
tionData» can be exported and lead to a valid data
trace.



Figure 10. Observation Behavior overview

10 Conclusion & Future work

Companies experience a lack of reliable usage infor-
mation about their products. Our approach towards
this problem is to build observation modules into prod-
ucts that are capable to provide reliable and structured
product usage information directly from the source.
Observation integration can possibly have a strong im-
pact on the development of innovative products, thus
the need for doing this efficiently in an engineering
methodology. This report introduces a model-driven
technique to integrate observation functionality into
products. The profile introduced here simplifies the
development tasks necessary for observation integra-
tion, thus reducing the effort for integration. It helps
to automate the process of observation specification
and data collection. However, the issue of automation
remains partly future work as the provision of even
better tools for the observation integration is crucial.
Furthermore, we see observation integration not as a
simple parallel development task only, but as a poten-
tial driving force behind a new development paradigm:
“design for observation”. This involves observation as
a first class development aspect and helps to provide
a solid basis for extensive, but meaningful product in-
formation presented to information stakeholders in a
comprehensive way.

Acknowledgments

This work is being carried out as part of the “Man-
aging Soft-Reliability in Strongly Innovative Product
Creation Processes” project, sponsored by the Dutch
Ministry of Economic Affairs under the IOP-IPCR pro-
gram.

References

[1] E. den Ouden, L. Yuan, P. J. M. Sonnemans, and A. C.
Brombacher. Quality and reliability problems from a
consumer’s perspective: an increasing problem over-
looked by businesses? Quality and Reliability Engi-
neering International, 22(7):821–838, 2006.

[2] D. D’Souza, A. Sane, and A. Birchenough. First-class
extensibility for UML-profiles, stereotypes, patterns.
In R. France and B. Rumpe, editors, UML’99 - The
Unified Modeling Language. Beyond the Standard. Sec-
ond International Conference, Fort Collins, CO, USA,
October 28-30. 1999, Proceedings, volume 1723, pages
265–277. Springer, 1999.

[3] J. Estublier and G. Vega. Reuse and variability in large
software applications. In ESEC/FSE-13: Proceedings
of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering,
pages 316–325, New York, NY, USA, 2005. ACM.

[4] M. Funk, P. H. A. van der Putten, and H. Corpo-
raal. Model interpretation for executable observation
specifications. In Proceedings of the 20th International
Conference on Software Engineering and Knowledge
Engineering. Knowledge Systems Institute, 2008.

[5] M. Funk, P. H. A. van der Putten, and H. Corporaal.
Specification for user modeling with self-observing sys-
tems. In Proceedings of the First International Con-
ference on Advances in Computer-Human Interaction,
Saint Luce, Martinique, 2008.

[6] H. Hartson and J. Castillo. Remote evaluation for
post-deployment usability improvement. Proceedings
of the working conference on Advanced visual inter-
faces, pages 22–29, 1998.

[7] D. M. Hilbert and D. F. Redmiles. An approach to
large-scale collection of application usage data over the
internet. icse, 00:136, 1998.

[8] K. Kabitzsch and V. Vasyutynskyy. Architecture and
data model for monitoring of distributed automation



systems. In 1st IFAC Symposium on Telematics Ap-
plications In Automation and Robotics, Helsinki, 2004.

[9] J. P. Martin-Flatin, G. Jakobson, and L. Lewis.
Event correlation in integrated management: Lessons
learned and outlook. J. Netw. Syst. Manage.,
15(4):481–502, 2007.

[10] OMG. Unified modeling language. Technical report,
Object Management Group, 2006.

[11] E. Shifroni and B. Shanon. Interactive user modeling:
An integrative explicit-implicit approach. User Model-
ing and User-Adapted Interaction, 2(4):331–365, Dec.
1992.

[12] Web-based Enterprise Management (WBEM). online:
http://www.dmtf.org/standards/wbem/.


