SlrpEV:
Smart Learning Research Pilot for Electric Vehicle Charging Stations

Professor Scott Moura
eCAL Director
Clare and Hsieh Wen Shen Endowed Distinguished Professor
University of California, Berkeley

September 19, 2021
Battery Management Systems (#BATT)
Automated, Connected, & Electric Vehicles (#ACES)
Power Systems, Grids, Markets (#GRID)

Dynamic Systems & Control

Optimization

Data Science

eCAL Research Areas
Projects I won’t speak about

ARPA-E NEXTCAR
Reduce energy consumption by ≥20%
Optimal Eco-Driving thru Signalized Intersections

Honda Research Institute
Lane Change in Dense Traffic

Berkeley University of California
Model Predictive Control for Urban Adaptive Cruise Control
Outline

1. Background & Motivation
2. Overview of SlrpEV
3. Behavioral Experiments
4. Optimizing Price & Power
5. Summary
The California Example: Duck Curve

The duck curve shows steep ramping needs and overgeneration risk.

Net load - March 31

- Ramp need ~13,000 MW in three hours
- Overgeneration risk
The California Example: Duck Curve

Net load - March 31

Quack!
The Evening Charging Problem

Current challenge, potentially exacerbated by EV penetration:
• Ramp rates increase, as folks return home and charge EVs
• CO$_2$ emissions are typically highest in evening

Opportunity:
• EV charging can be controlled
Flatten the Duck Curve
Minimize Emissions

Scale 1:10,000
2M EVs

Pollution Inequity in United States:
- Non-Hispanic whites experience 17% less PM2.5 air pollution exposure than they cause.
- Blacks and Hispanics bear 56% and 63% more PM2.5 air pollution exposure than they cause.

CW Tessum, JS Apte, AL Goodkind, NZ Muller, KA Mullins, DA Paolella, S Polasky, NP Spring, SK Thakrar, JD Marchall, and JD Hill, "Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure," Proceedings of the National Academy of Sciences, March 2019.
Are we electrifying transportation where it’s needed most?

[Bar chart showing U.S. household income distribution, 2017. The chart compares all households with households owning battery electric or plug-in hybrid electric vehicles. The data indicates that a higher percentage of households in the higher income brackets own battery electric or plug-in hybrid electric vehicles.]
On average, low-income communities have fewer per capita chargers.
Low-income communities have some of the longest drive times to fast charging.

Source: Tiffany Hoang, Senate Bill 1000 Staff Workshop: Electric Vehicle Charging Infrastructure Deployment Assessment, July 8, 2021.
Outline

1. Background & Motivation

2. Overview of SlrpEV

3. Behavioral Experiments

4. Optimizing Price & Power

5. Summary
SMART LEARNING PILOT FOR
electric vehicle
CHARGING STATIONS
Goal & Objectives

SlrpEV Goal: Create next generation of workplace/public EV charging that decreases emissions, increases facility operator revenues, and decreases EV owner costs.

Research Objective:
- Optimize price and charging schedule by learning user preferences.
Cyber-Physical & Human System
The Physical

- **UC Berkeley**
 - 8 ports, Level 2 (~6.6 kW)
- **UC San Diego**
 - 8 ports, Level 2 (~6.6 kW)
- **SunPower Silicon Valley (San José)**
 - 10 ports, Level 2 (~6.6 kW)
Cyber-Physical & Human System

The Cyber

- 5min State Update
- Price generation
- Power Schedule

Prices

Power Schedule

Metrology Data

userID, Choice

• eCAL
• KITU SYSTEMS

Deep DAYARAMANI

Akshat JAIN

REGULAR $2.00/hr
Max power for the duration of charging.

SCHEDULED $6.00
30 miles & free parking
$1.50/hr equiv.; $3.00/hr after 1:15am

Departure Time: 1:00 pm
Range: 30 miles
09:00am to 9:00pm
0 miles to 200 miles

Save Charge Settings:

Confirm Regular
Cyber-Physical & Human System

The Human

REGULAR
- Fixed rate in USD/hr
- Max power until unplug or top-off
- NOTE: charging power is uncontrollable load

SCHEDULED
- User provides departure time & added range
- Total cost fixed a priori
- NOTE: charging power is now controllable

If I want to shift load, then how much should you discount SCHEDULED to acquire flexibility?
Discrete Choice Model – How to model human behaviors

\[U_j = \beta_j^T z_j + \gamma_j^T w_j + \beta_{0j} + \varepsilon_j \]

where

- \(U_j \): Utility of j-th alternative, \(j \in \{ \text{asap, flex} \} \)
- \(\beta_j \): Parameters of controlled attributes
- \(z_j \): Controlled attributes
- \(\gamma_j \): Parameters of UN-controlled attributes
- \(w_j \): Uncontrolled attributes
- \(\beta_{0j} \): Alternative specific constant
- \(\varepsilon_j \): Undefined errors

Logit Model
Assuming “perception” errors \(\varepsilon_j \) have i.i.d. Extreme Value Distribution, the prob. of choosing j-th alternative is

\[
Pr(alt j chosen) = Pr\left(\cap_{j \neq i} (U_j > U_i) \right) = \frac{e^{V_j}}{\sum_{i=1}^{J} e^{V_i}} = sm(V)
\]

where \(V_j = \beta_j^T z_j + \gamma_j^T w_j + \beta_{0j} \)
Quick Stats (5 Nov 2020 – 18 Sep 2021)

- 12.34 MWh Delivered
- 42,500 e-miles Delivered
- 647 Charging Sessions

- 80 unique users
- Choices
 - 294 REGULAR
 - 353 SCHEDULED

- 142 at UC San Diego
- 505 at UC Berkeley

- Stated Pref Survey
 - 227 responses
Vehicle User Distribution is Diverse

Distribution of Vehicles by kWh Delivered
Outline

1. Background & Motivation
2. Overview of SLrpEV
3. Behavioral Experiments
4. Optimizing Price & Power
5. Summary
A Specific Case of Optimal Control for Human-Actuated Dynamic Systems

S. Bae, S. M. Han, S. J. Moura, “Modeling and Control of Human Actuated Systems,” 2nd IFAC Conference on Cyber-Physical & Human-Systems, Miami, FL, USA, 2018. IFAC Young Author Award Finalist. DOI: 10.1016/j.ifacol.2019.01.016
Really? Can you actually shift people’s choices IRL?

<table>
<thead>
<tr>
<th>CHOICE during CONTROL Period</th>
<th>CHOICE during TEST Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presented Price (cents/hr) during CONTROL Period</td>
<td>Presented Price (cents/hr) during TEST Period</td>
</tr>
<tr>
<td>REGULAR</td>
<td>SCHEDULED</td>
</tr>
<tr>
<td>REGULAR</td>
<td>SCHEDULED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dates</td>
<td>7/19/21 – 8/2/21</td>
</tr>
<tr>
<td>REG:SCH ratio</td>
<td>21:16</td>
</tr>
<tr>
<td>Avg Session Time</td>
<td>5:29:05</td>
</tr>
<tr>
<td>Avg kWh</td>
<td>23.966 kWh</td>
</tr>
<tr>
<td>Avg. Session Cost</td>
<td>$5.54</td>
</tr>
<tr>
<td>Avg. regPerHr</td>
<td>$0.91/hr</td>
</tr>
<tr>
<td>Avg. schPerHr</td>
<td>$0.83/hr</td>
</tr>
</tbody>
</table>
Outline

1. Background & Motivation
2. Overview of SlrpEV
3. Behavioral Experiments
4. Optimizing Price & Power
5. Summary
Expected Cost Minimization w/ Discrete Choice Model

Expected Cost Minimization Problem

\[
\min_{z,u} \sum_j \Pr(J = j|z) \, h_j(z, u)
\]

subject to: linear functions of \((z, u)\)

where \(z\) is incentive control, \(u\) is direct control, and \(h_j(z, u)\) is bi-convex in \((z, u)\).

Compact Form

\[
\min_{z,u} v^T h(z, u)
\]

where \(v_j = sm(\Theta_j z)\), \(h = [h_{flex}(z, u) \quad h_{asap}(z, u)]^T\)

Q: How to effectively and efficiently find solutions?
A: Re-formulate into multi-convex problem
Fenchel-Young Inequality

Denote log-sum-exp function as: \(lse(u) = \ln(\sum_{j \in A} \exp(u_j)) \)

The convex conjugate of is \(lse^*(v) = \max_u u^T v - lse(u) \)

Using Fenchel-Young ineq and first-order optimality condition:

\[lse(u) + lse^*(v) - u^T v \leq 0 \iff v = sm(u) \]
Reformulation to Multi-convex Problem

\[
\min_{z,u,v} v^T h(z, u)
\]
where \(v = sm(\Theta z) \)

subject to:
\[
lse(\Theta z) + lse^*(v) - v^T(\Theta z) \leq 0
\]
where \(lse(x) = \log(\sum_j \exp(x_j)) \)

Multi-convex in \((z, u, v)\)
Apply block coordinate descent
Monte Carlo Sims

Comparison of price & power controller vs. without (first-come/first-serve)

- **41% reduction** in mean overstay time
- **38% increase** in mean net profit
- **32% increase** in mean EVs served

T. Zeng, S. Bae, B. Travacca, S. J. Moura, “Inducing Human Behavior to Maximize Operation Performance at PEV Charging Station,” *IEEE Transactions on Smart Grid*, v12, n4, pp. 3353-3363, July 2021. DOI: [10.1109/TSG.2021.3066998](https://doi.org/10.1109/TSG.2021.3066998)
Prices – encourage SCHEDULED during peak hours

- Peak tariff is 12n-5p
- Significant discount for FLEX relative to ASAP during/just-prior to peak

T. Zeng, S. Bae, B. Travacca, S. J. Moura, “Inducing Human Behavior to Maximize Operation Performance at PEV Charging Station,” *IEEE Transactions on Smart Grid*, v12, n4, pp. 3353-3363, July 2021. DOI: 10.1109/TSG.2021.3066998
Outline

1. Background & Motivation
2. Overview of SlrpEV
3. Behavioral Experiments
4. Optimizing Price & Power
5. Summary
• EV Smart Charging Pilot for *incentivizing* service choice

• Cyber-Physical & *Human* system modeling framework, with *discrete choice models*

• Theoretical reformulation of optimal pricing and scheduling to convert into *multi-convex optimization program*

HIRING:
PATH Associate Director

http://tiny.cc/apply_path_director

California Partners for Advanced Transportation Technology